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Abstract

In this paper refined large deviation asymptotics are derived for the
classical occupancy problem. The asymptotics are established for a
sequential filling experiment and an occupancy experiment. In the first
case the random variable of interest is the number of balls required to
fill a given fraction of the urns, while in the second a fixed number of
balls are thrown and random variable is the fraction of nonempty urns.

1 Introduction

The classical occupancy problem [8] is concerned with the number of oc-
cupied urns after r balls have been thrown into n urns, and with the balls
thrown according to Maxwell-Boltzmann (MB) statistics (i.e., each ball en-
ters any urn with equal probability, and different throws are independent of
one another). It is a fundamental model that appears in many contexts.

The occupancy problem can be regarded from two related points of view.
One perspective focuses on the filling process and the other on the occupancy
process. In the filling process, balls are thrown in an endless sequence and we
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record the number of balls that must be thrown before a previously empty
urn becomes nonempty. This produces a sequence of integer valued random
variables whose sum is the random number of balls needed occupy a given
number of urns. In the occupancy process, a fixed number of balls are thrown
and we record the fraction of occupied urns after each ball is thrown. This
produces a sequence of random variables that is monotonically increasing,
with the last variable representing the random fraction of occupied urns
after all balls are thrown.

Clearly these two processes are closely related, in that one is essentially
the inverse of the other. Indeed, it is tempting to think they give exactly the
same information and that statements on the asymptotic behavior of one
immediately translate into statements on the asymptotic behavior of the
other. Although this would be true if the processes were strictly monotonic,
in fact they are not. The differences between the information contained in
the processes is made precise in Section 2.2. We will see that once these
differences are accounted for, it is still possible to analyze the behavior each
model once one understands the other.

For the occupancy process, process level large deviation principle (LDP)
results for the fraction of occupied urns are given in [19], together with the
solution to the associated calculus of variations problem when the termi-
nal value of the trajectory is fixed (this identifies the rate function for the
outcome of the occupancy experiment). The papers [7, 4] generalize the
process level LDP determined in [19], and moreover [7] obtains strong min-
imizing extremals to the associated calculus of variations problem in this
more general setting.

On the other hand, the paper [16] directly studies the filling process.
Using the Gärtner-Ellis Theorem [6] and a representation for the number of
balls needed to fill a given fraction of urns (the filling experiment) as a sum
of random variables, [16] proves an LDP for the ratio of this number to the
number of urns.

The analysis of the occupancy process, as in [7], provides greater qual-
itative insight into the behavior of occupancy problems. However, because
the filling process has this very convenient interpretation as a sum of inde-
pendent random variables, it is a more natural object to study when consid-
ering asymptotics that are more refined than just large deviation properties.
Hence in this paper we will first focus on getting the refined large deviation
asymptotics for the filling process.

Throughout this paper the same asymptotic scaling as in [7] will be
used. Let bac denote the integer part of a ∈ [0,∞). Fix θ ∈ (0,∞), let
r = bθnc and consider the limit as n → ∞. Suppose that Γn

0(θ) denotes
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the fraction of urns that are empty after all r balls have been thrown. It
is easy to derive a law of large numbers limit, and indeed the fraction of
unoccupied urns converges in probability to e−θ by the well known Poisson
approximation [14]. In this context, 1−Γn

0 (θ) ≥ ξ > 1−e−θ corresponds to a
rare event (exceptionally many occupied urns), and likewise 1−Γn

0 (θ) ≤ ξ <

1−e−θ constitutes a rare event (exceptionally many empty urns). Our main
results, which are stated in Section 2, are explicit higher order asymptotic
approximations for the probabilities of such rare events.

For classical occupancy models, combinatorial formulas for certain prob-
abilities can be obtained using the inclusion-exclusion principle. However,
since in the setting of rare event problems one must add and subtract quan-
tities that are large compared to the quantity one hopes to compute, these
“exact” formulas are not always useful. Indeed, for some of the calculations
given at the end of the paper the exact formulas did not give a meaningful
answer. Also, because they are not analytic expressions the formulas do
not provide much in the way of qualitative insight. Asymptotic approxi-
mations, and in particular large deviation approximations, often provide a
more useful alternative.

The classical occupancy problem arises in several applications. For ex-
ample, in complexity theory it appears in connection with the random 3-
SAT problem [13]. Here there are n variables, and formulas consisting of
cn boolean clauses with 3 distinct variables are chosen at random according
to a uniform distribution. If c is too large, no value of the variables will
satisfy the formula, i.e., make its value true, with high probability. In [13] it
is shown that if c > 4.76 this is the case by using a large deviations analysis
of the classical occupancy model originated by Weiss [19]. In this model the
variables are taken as the urns and a certain type of clause (one with exactly
one unnegated variable) are taken as the balls.

In connection with statistical hypothesis testing, large deviation approx-
imations (and in particular refined approximations such as those we describe
later on) can be used to construct confidence intervals for tail probabilities
for which the central limit theorem might give poor estimates. For example,
in [5] the problem is to determine how many sensors are active in a network.
One keeps a count of those which have responded to query signals. Suppose
each response confirms the activity of one randomly chosen sensor and it is
desired to estimate the number of the active sensors with high probability.
Estimators, confidence intervals, and estimates for error probabilities can
all be constructed for networks with a hundred or more (active) nodes using
the refined large deviation asymptotics described here.

As a final example large deviation approximations for the classical oc-
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cupancy model can also be used to dimension optical switches. Here the
problem is to determine the number of shared any-color to any-color wave-
length converters that would be needed to provide satisfactory transmission
in a bufferless optical packet switch. Other applications include data bases
[1], and more recently coding theory [15].

There is a small collection of papers that study the sort of “higher or-
der” large deviation approximations considered in the present paper. The
first work in this area is Bahadur and Rao [3], which considers the sample
mean for independent and identically distributed random variables. Iltis
[11] considers higher order large deviation asymptotics for Markov-additive
random variables in Rd where the chain is regenerative, aperiodic and time
homogenous. In both papers, a refined central limit approximation is ap-
plied to the twisted distribution, which in the case of [11] uses techniques
similar to those in [12]. Also in both papers the underlying processes are
time homogeneous, which differs from the state dependency present in the
evolution of the occupancy process.

A paper which proves higher order approximations for processes with
state dependency is Azencott [2]. This paper considers solutions of “small
noise” stochastic differential equations and gives refined approximations for
probabilities of sets of trajectories. These sets of trajectories must satisfy a
certain smoothness condition on the boundary of the set. The corresponding
central limit approximations are somewhat more straightforward in that the
original process is defined in terms of a Gaussian driving noise. Although
the rate coefficients are not given in explicit form, the structure of the ap-
proximation is similar to one that we obtain for a certain parameter regime
in the occupancy problem.

Lastly we note that Fleming and James [10] also investigate higher order
asymptotics for the probability that a “small noise” diffusion process exits
a fixed domain before a given fixed time. However, the results of [10] apply
only to initial conditions for which the large deviation minimal cost trajec-
tory exits before the given terminal time. Although some of the problems
we consider could be formulated as such “exit time” problems, it turns out
that the minimal cost trajectory will always exit exactly at the terminal
time, and so the methods used in [10] do not seem to apply.

In terms of technique, our approach is closest to that of [3]. However, the
final form of the result is qualitatively quite different from that of [3], and
this is due to both the state dependencies and to certain natural boundaries
on the state space of the occupancy process (one cannot have more filled
urns than the total number of urns available).

In what follows we omit the case where the urns are not all empty ini-
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tially, which requires only minor modifications of the methods that we use.
We expect that these methods would also apply with only small adjustments
to the case when balls “miss the urns” with a fixed probability p > 0 inde-
pendently at each trial [18], but have not verified all details at the present
time. A more substantial generalization is to consider statistics other than
Maxwell-Boltzmann, such as Bose-Einstein or Fermi-Dirac. Another inter-
esting generalization is refined large deviation approximations for the ran-
dom vector whose ith component is the fraction of urns containing exactly
i balls, i ≤ I for a fixed constant I .

The rest of the paper is organized as follows. In Section 2 we define the
probability model and review known large deviation results for the classical
occupancy problem. These include a description of an importance sampling
scheme which allows accurate empirical estimation of rare event probabilities
in classical occupancy, which will be used later when we present data on
these various approximations. We then state the main results. The proof
is given in Section 3. It relies on a refined central limit approximation for
sums of independent but non-identically distributed random variables lying
on a common lattice, and generalizes several results in [9, Chapter XVI].
Finally, in Section 4 we present some numerical results for the asymptotics
as well as approximate values obtained using an “exact” approach and the
importance sampling scheme.

2 Review and Main Results

2.1 Large Deviations for the Occupancy Process

We restrict attention to occupancy models with Maxwell-Boltzmann sta-
tistics. In [7, 4] a large deviations principle was proved occupancy models
with the number of urns n as the scale parameter and the number of balls
r = bnθc in fixed proportion as n → ∞. [7] includes a fairly complete so-
lution to the associated calculus of variations problem that must be solved
to obtain the large deviations exponent. In what follows we restrict to the
case of starting with all urns initially empty, the case where some urns are
already occupied being a straightforward extension. Suppose that a total
of i balls (or t = i/n balls per urn) have been thrown at some stage in the
experiment. Then the fraction of occupied urns Γn

0+(t) performs a random
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walk, with Γn
0+(0) = 0 and

Γn
0+

(
t +

1
n

)
= Γn

0+(t), w.p. Γn
0+(t)

Γn
0+

(
t +

1
n

)
= Γn

0+(t) +
1
n
, otherwise.

By the well known Poisson approximation [14], after nθ balls have been
thrown (or θ balls per urn), the fraction of empty urns is approximately e−θ .
Thus there are two different rare events of interest:

V1
.= {Γn

0+(θ) ≥ ξ : ξ < θ, ξ > 1 − e−θ},
V2

.= {Γn
0+(θ) ≤ ξ : ξ < 1− e−θ}. (2.1)

V1 corresponds to the rare event that exceptionally many urns are occupied
and V2 corresponds to the rare event that exceptionally few are occupied.
In what follows we assume that nξ and nθ are both nonnegative integers.

Remark 2.1. Note that in the case of event V2 θ > log(1 − ξ) > ξ. In the
case of event V1 we impose the condition ξ < θ, but there is no real loss of
generality. If ξ > θ then we need more nonempty urns than there are balls,
which is impossible (i.e., P{Γn

0+(θ) ≥ ξ} = 0). If ξ = θ then {Γn
0+(θ) ≥ ξ}

corresponds to the event that every ball falls into an empty urn, an event
whose probability is (n−nθ)!

n! . Note also that when ξ = 1, V1 is a rare event
for any 1 < θ <∞, and that there is no V2 type rare event. In this case, the
event V1 means that every urn is occupied after nθ balls have been thrown.

Let Q(Z+) denote the set of probability measures on the non-negative
integers, and define the relative entropy of µ ∈ Q(Z+) with respect to ν ∈
Q(Z+) by

D (µ || ν) .=
∑

i∈ +

log (µi/νi)µi

(with the understanding that 0 log0 = 0). The large deviations exponent
for both the events described above is given by (cf. [7, 16])

J(θ) .= inf
Γ
D (Γ || P(θ)) ,

where the infimum is over all Γ ∈ Q(Z+) subject to Γ0 = 1−ξ and
∑

i iΓi =
θ, and P(θ) denotes the Poisson distribution with parameter θ. The infimum
is readily found to be

J(θ) = (θ − ξ) logρ+ (1− ξ) log(1− ξ)− (1− ρξ)
ρ

log(1 − ρξ), (2.2)
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where ρ is the unique positive root to

θρ = − log (1 − ρξ) . (2.3)

To see that such a root exists and is unique, first note that 0 is always a root.
The right hand side of (2.3) is a strictly convex function, with derivative with
respect to ρ equal to ξ at ρ = 0, and which increases to ∞ as ρ ↑ ξ−1. Hence
a unique positive solution to (2.3) always exists provided θ > ξ. Moreover,
when it does exist, ρξ < 1.

As is well known in large deviation theory, the asymptotically most likely
trajectory for the random walk, conditioned on the outcome of either exper-
iment (for example V1), can be identified as the “cheapest cost trajectory”
for an associated calculus of variations problem. In the present context this
is just the absolutely continuous trajectory ψ0 that minimizes

∫ θ

0
D
((

−ψ̇0(t), 1 + ψ̇0(t)
)
|| (ψ0(t), 1− ψ0(t))

)
dt

subject to the constraints ψ0(0) = 1 and ψ0(θ) ≤ 1 − ξ, and with D now
relative entropy for probability measures on {0, 1}. As the results in [7]
show, the minimizer is just

ψ0(t) =
1
ρ
e−tρ +

(
1 − 1

ρ

)
.

The parameter ρ is useful in change-of-measure importance sampling [17] to
obtain empirical estimates for rare event probabilities in classical occupancy.
An efficient scheme can be obtained by multiplying the probability that a
ball enters an occupied urn by ρ, i.e., to consider a new measure under which

P̃
{

Γn
0+

(
t +

1
n

)
= Γn

0+(t)
}

= ρΓn
0+(t) .

ρ can be interpreted as a “twist parameter.” When ρ < 1 (which is true in
the case ξ > 1 − e−θ) we make it more likely that balls fall into the empty
urns. When ρ > 1 (true in the case ξ < 1−e−θ) we make it more likely that
balls fall into occupied urns.

We now go over some preliminaries for the filling experiment before sta-
ting the main results.

2.2 Filling a Given Fraction ξ of Urns

The random number of balls needed to fill a given fraction ξ of the urns is the
sum of nξ non-identical independent random variables. The ith summand
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represents the number of balls that are thrown to occupy an empty urn
when i − 1 urns are already occupied. By a failure probability we mean
the probability that a thrown ball lands in an occupied urn, and so the
failure probability at time i is qn

i = (i− 1)/n. Suppose Xn
i is the number

of balls thrown to occupy another empty urn immediately after i − 1 urns
have become occupied. Defining Gk(q)

.= qk−1p, k = 1, 2, . . . , p = 1− q, with
pn

i = 1 − qn
i , we have

P {Xn
i = k} = Gk(qn

i ),

Y n(ξ) .=
∑nξ

i=1X
n
i

n
.

In terms of occupancy process, the number of balls per urn Y n(ξ) needed
to occupy a given fraction ξ ∈ (0, 1] of the urns satisfies

Y n(ξ) = min
{
t : Γn

0+(t) ≥ ξ
}
.

By the Poisson approximation, Y n(ξ) ≈ − log(1 − ξ) balls per urn are re-
quired to occupy nξ urns. Two different kinds of rare events connected with
the filling process are

W1
.= {Y n(ξ) ≤ θ : ξ < θ < − log(1 − ξ)}
= {Y n(ξ) ≤ θ : ξ < θ, ξ > 1− e−θ}

W2
.= {Y n(ξ) ≥ θ : θ > − log(1 − ξ)}
= {Y n(ξ) ≥ θ : ξ < 1 − e−θ}.

Note that when ξ = 1 W1 is a rare event for any 1 < θ < ∞ (and there is
no type W2 rare event). W1 in this case should be interpreted as using no
more than θ balls per urn to occupy all the urns.

Clearly V1, V2 as defined in (2.1) are closely related to W1, W2. In fact

V1 = W1. (2.4)

However V2 6= W2. Suppose that W2 has occurred. Then at least θ balls per
urn were required to fill nξ urns, which implies after throwing θ balls per
urn, there must be at most nξ urns occupied, i.e.,

Γn
0+(θ) ≤ ξ,

so V2 has occurred.
However, V2 can occur even when W2 does not occur. Suppose that nξ

urns are occupied strictly before nθ balls are thrown, but that all additional
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balls (up till and including when ball nθ is thrown) fall into already occupied
urns. Then V2 occurs, though W2 does not. We can formulate this as

V2 = W2 ∪
{
Y n(ξ) < θ and Xn

nξ+1 > nθ − nY n(ξ)
}
. (2.5)

Let Fn(α) .= 1
n log E

[
enαY n(ξ)

]
be the scaled logmoment generating function.

Then one can readily compute

Fn(α) = αξ +
1
n

nξ∑

j=1

log(pn
j ) − 1

n

nξ∑

j=1

log(1 − qn
j e

α). (2.6)

Fix α < − log ξ. Interpreting the last display as a Riemann sum, letting
n → ∞, and then evaluating the resulting integral shows that Fn(α) →
F (α), where

F (α) = αξ − (1 − ξ) log(1 − ξ) +
1 − eαξ

eα
log(1− eαξ). (2.7)

Note that the convergence of Fn to F is true for all values of ξ, including
ξ = 1. When ξ = 1 we restrict to α < 0, and F (α) = α + 1−eα

eα log(1− eα).
Define the function Jn(θ) to be the Legendre transform of the log moment

generating function:

Jn(θ) = sup
α

{αθ − Fn(α)}. (2.8)

Direct calculations show that (i) Fn is strictly convex on its domain of
finiteness, (ii) F ′

n(−∞) = ξ, and (iii) that F ′
n(α) ↑ ∞ as α ↑ − log[(nξ−1)/n].

It then follows that the supremum in the last display is finite and attained
at some unique α∗

n ≤ − log[(nξ − 1)/n] whenever θ > ξ, with θ = F ′
n(α∗

n).
Also observe that F ′

n(0) ≈ − log(1 − ξ). Hence for sufficiently large n, if
ξ > 1 − e−θ then α∗

n < 0 and if ξ < 1− e−θ then α∗
n > 0. Define

ρn = expα∗
n. (2.9)

Then θ = F ′
n(α∗

n) becomes

θ = ξ +
1
n

nξ∑

j=1

qn
j ρn

1 − qn
j ρn

=
1
n

nξ∑

j=1

1
1 − qn

j ρn
. (2.10)

Define

J̄(θ) .= sup
α
{αθ − F (α)}

= θ logρ− F (log(ρ)),
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where α∗ = logρ uniquely achieves the supremum. Then simple calculation
shows that ρ indeed satisfies (2.3). Inserting the expression for F we recover
the equation (2.2), and thus J̄ = J . Again notice that this holds for both
cases ξ = 1, ξ < 1.

Later on, we will prove that ρn → ρ and α∗
n → α∗. Define the “twisted

variance”

σ2
n
.= F ′′

n (α∗
n) =

1
n

nξ∑

j=1

qn
j e

α∗
n

(
1 − qn

j e
α∗

n

)2 . (2.11)

Again using the standard Riemann integral approximation and the bound
α∗ < − log ξ, we have σ2

n → σ2, where

σ2 .= F ′′(α∗) =
∫ ξ

0

teα
∗

(1− teα∗)2
dt.

Integrating gives

σ2 =
ξ

1 − ρξ
− θ. (2.12)

2.3 Main Results

The main results of this paper can now be stated. We will first give the
refined asymptotics for the filling process and then, by incorporating the
difference (2.5), analogous results for the occupancy process. We first make
a definition.

Definition 2.1. Consider a sequence of numbers pn ∈ [0, 1] and J ∈ [0,∞]
such that

1
n

log pn → J.

Then K ∈ (0,∞) is a ν-prefactor for {pn} if

nνpne
nJ → K.

Theorem 2.1. If ξ < 1, ξ < θ and ξ > 1 − e−θ then pl
n = P {Y n(ξ) ≤ θ} =

P {W1} has a 1
2-prefactor with

lim
n→∞

√
n P {Y n(ξ) ≤ θ} enJ(θ) =

1√
2πσ2

(
1

1 − ρ

)√
1− ρξ

1 − ξ
. (2.13)
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If ξ < 1 and ξ < 1 − e−θ then pg
n = P {Y n(ξ) ≥ θ} = P {W2} has a 1

2-
prefactor with

lim
n→∞

√
n P {Y n(ξ) ≥ θ} enJ(θ) =

1√
2πσ2

(
ρ

ρ− 1

)√
1− ρξ

1 − ξ
. (2.14)

If ξ = 1, ξ < θ, p1
n = P {Y n(1) ≤ θ} = P {W2} has a 0-prefactor with

lim
n→∞

P {Y n(1) ≤ θ} enJ(θ) =
1√

(1 − ρ)σ2
. (2.15)

In all cases ρ is the unique positive root of

θ = −1
ρ

log (1 − ρξ)

and σ2 is determined as in (2.12).

Theorem 2.2. If ξ < 1, ξ < θ and ξ > 1−e−θ then ql
n = P

{
Γn

0+(θ) ≥ ξ
}

=
P {V1} has a 1

2-prefactor with

lim
n→∞

√
n P

{
Γn

0+(θ) ≥ ξ
}
enJ(θ) =

1√
2πσ2

(
1

1 − ρ

)√
1 − ρξ

1 − ξ
. (2.16)

If ξ < 1 and ξ < 1 − e−θ then qg
n = P

{
Γn

0+(θ) ≤ ξ
}

= P {V2} has a 1
2-

prefactor with

lim
n→∞

√
n P

{
Γn

0+(θ) ≤ ξ
}
enJ(θ) =

1√
2πσ2

(
ρ

ρ− 1
+

ρξ

1 − ρξ

)√
1 − ρξ

1 − ξ
.

(2.17)
If ξ = 1, q1n = P

{
Γn

0+(θ) = 1
}

= P {V1} has a 0-prefactor with

lim
n→∞

P
{
Γn

0+(θ) = 1
}
enJ(θ) =

1√
(1 − ρ)σ2

. (2.18)

In all cases ρ, σ2 are obtained as in Theorem 2.1.

Owing to (2.4) the 1
2 -prefactors for pl

n and ql
n are the same, as are the

0-prefactors for p1
n and q1n. However, as suggested by (2.5), the 1

2 -prefactor
for qg

n differs from that of pg
n .
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3 Proof of the Main Results

3.1 An Extension of the Central Limit Theorem

In what follows we will need the following theorem, which generalizes [9,
Page 540, Theorem 2] to independent, non-identical lattice random vari-
ables. Let {Wn

i : 1 ≤ i ≤ n} be a sequence of independent, non-identical,
lattice random variables. Let

Sn =
n∑

i=1

Wn
i ,

and suppose that

E [Wn
i ] = 0, E

[
(Wn

i )2
]

= sni , E
[
(Wn

i )3
]

= µn
i .

Define

σ2
n
.=

1
n

E
[
S2

n

]
=

1
n

n∑

i=1

sni

µn
.=

1
n

E
[
S3

n

]
=

1
n

n∑

i=1

µn
i .

Finally, define the characteristic functions φn(t) .= E
[
eitSn

]
and φn

k(t) .=
E
[
eitW

n
k

]
.

The theorem requires that the sequence of distributions satisfy the fol-
lowing conditions:

Condition 3.1. 1. limσn = σ, where 0 < σ <∞.

2. limµn = µ, where µ ∈ R.

3. There is 0 < C < ∞ such that for any n and all 1 ≤ i ≤ n, sni ≤ C

and |µn
i | ≤ C.

4. There is 0 < C <∞ such that for any n and all 1 ≤ i ≤ n, E(Wn
i )4 ≤

C (without loss we assume C is the same constant as in part 3).

5. For any δ > 0, there exists 0 < b < 1 so that for all t ∈ [−π,−δ]∪ [δ, π]
and all n,

|φn(t)| ≤ bn.
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Remark 3.1. Parts 1 to 4 of the condition are mild and easy to check.
However part 5 can be nontrivial. It is easy to check when φn is of the form
[φ(t)]n, corresponding to identically distributed random variables. However,
for non-identical random variables it need not hold. We thus give a simple
sufficient condition for part 5 which is adequate for the present problem.

Condition 3.2. For any δ > 0 there exist constants c ∈ (0, 1), ζ ∈ (0, 1),
and for each n ∈ N there exists a subset Λn of {1, 2, . . . , n} such that |Λn| ≥
ζn and

∣∣φn
j (t)

∣∣ ≤ c, for all j ∈ Λn and any t ∈ [−π,−δ]∪ [δ, π].

It is straightforward to show that Condition 3.2 implies part 5 of Con-
dition 3.1.

The following theorem gives a refined expansion of the central limit theo-
rem for non-identical independent lattice random variables. In [9, Page 531,
Chapter XVI], approximation theorems are proved for i.i.d random variables
(lattice and non-lattice), and an outline is given for the non-identical, non-
lattice case. However, even in the non-identical lattice case the results in [9]
take us most of the way, although a replacement for the argument leading
to the estimate (4.13) in [9, Page 541] is needed, see our condition below.
The proof of the following theorem can be found in [20].

Theorem 3.3. Suppose Wn
i , i = 1, . . . , n are independent lattice random

variables, with lattice spacing h, first three moments (0, sni , µ
n
i ) and bounded

fourth moments satisfying Condition 3.1. LetHn(x) be the distribution func-
tion of

Sn√
nσ2

n

where nσ2
n
.=
∑n

i=1 s
n
i and let H#

n (x) be the distribution function which is
obtained by interpolating Hn(x) linearly through the midpoints of the lattice.
Let N (x) be the cumulative distribution function of the standard N(0, 1)
distribution and N be the corresponding density. Then

Dn(x) .= H#
n (x) −N (x) − µn

3

6σ3
n

√
n

(1− x2)N(x) = o

(
1√
n

)

uniformly in x.

Observe that by construction Hn(x) = H#
n (x) at midpoints of their

lattice, which has spacing h/ (σn
√
n).

13



3.2 A Limit Theorem for the Exponents

Recall the definitions of ρ and ρn in Sections 2.1 and 2.2, where ρ is the
unique positive root to (2.3) and ρn is characterized by (2.10). Our first
goal is to show that limn→∞ n(ρn − ρ) exists and identify the limit. Recall
from the discussion below (2.3) that ρξ < 1. It is also worth recalling that
the assumption that θ > ξ is harmless, in that θ = ξ and θ < ξ correspond
to situations that are easy to analyze and vacuous, respectively. See Remark
2.1.

Lemma 3.4. Assume ξ ≤ 1, θ > ξ, so that ρn is well defined by (2.10) and
ρ is well defined in (2.3). Then

ρn − ρ =
K

n
+ o

(
1
n

)
,

where

K =
1
2

ρ3ξ

(1− ρξ) log(1 − ρξ) + ρξ
.

Proof. Define f(ρ, x) .= 1
1−ρx and recall that qn

j = (j − 1)/n for j =
1, . . . , nξ. From the definition of ρ and using the fact that nξ is an inte-
ger, it follows that

θ =
∫ ξ

0

1
1 − ρx

dx

=
nξ∑

j=1

∫ qn
j+1

qn
j

f(ρ, x)dx

=
1
n

nξ∑

j=1

f(ρ, qn
j ) +

nξ∑

j=1

∫ qn
j+1

qn
j

(
f(ρ, x)− f(ρ, qn

j )
)
dx.

By elementary arguments using Taylor’s Theorem the last expression is

1
n

nξ∑

j=1

f(ρ, qn
j ) +

1
2n2

nξ∑

j=1

∂

∂x
f(ρ, qn

j ) +
Mn(ξ, ρ)nξ

6n3
,

where Mn(ξ, ρ) accounts for the remainder terms and M = supnMn(ξ, ρ)<
∞. Since (2.10) can be expressed as

θ =
1
n

nξ∑

j=1

f(ρn, q
n
j ),
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we obtain

1
n

nξ∑

j=1

(f(ρ, qn
j ) − f(ρn, q

n
j )) +

1
2n2

nξ∑

j=1

∂

∂x
f(ρ, qn

j ) + O

(
1
n2

)
= 0. (3.1)

We pause to estimate the difference ρn − ρ. Recall that ρξ < 1. Fix ρ̄ > ρ
so that ρ̄ξ < 1, and denote

I(α) .=
∫ ξ

0
f(α, x)dx.

Then I(ρ) = θ. Let the solution for I(α) = θ̃ be denoted ρθ̃, and observe
that I(α) is monotone increasing and continuous in α. Thus for sufficiently
small ε > 0, ρθ+ε < ρ̄. Let

Sn(α) .=
1
n

nξ∑

j=1

f(α, qn
j ).

Then Sn(ρn) = θ. Also observe that Sn is monotone increasing and con-
tinuous in α as well. Since f(α, x) is monotone increasing in x, for any
ρ < α < ρ̄

Sn(α) < I(α) < Sn(α) +
1
n

1
1 − ξα

, (3.2)

where the first inequality uses that Sn(α) is a lower Riemann sum, and the
second uses that Sn(α) + 1

n
1

1−ξα − 1
n is an upper Riemann sum. Since (3.2)

implies Sn(ρ) < I(ρ) = θ, ρn > ρ. Inserting α = ρθ+ε into (3.2) gives

Sn(ρθ+ε) < θ + ε < Sn(ρθ+ε) +
1
n

1
1 − ξρθ+ε

.

For ε > 0 small enough that ρθ+ε < ρ̄,

|θ + ε − Sn(ρθ+ε)| <
A1

n
,

where A1 = 1
1−ξρ̄ . It follows then lim supρn < ρθ+ε, and since ε > 0 can be

arbitrary small lim supρn ≤ ρ. We have already shown ρn > ρ, and thus

lim
n→∞

ρn = ρ.

We have shown that for all sufficiently large n ρ < ρn < ρ̄. Inserting
α = ρn into (3.2) and using that Sn(ρn) = θ = I(ρ), one obtains

A1

n
≥ |I(ρn) − I(ρ)| ≥ A3 |ρn − ρ| .
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Here A3 > 0 is a lower bound on the derivative of I with respect to ρ̃ ∈ [ρ, ρ̄].
It follows that lim supn→∞ n |ρ− ρn| <∞. Returning to equation (3.1) and
applying a Taylor series expansion with respect to ρ to the first term,

−
nξ∑

j=1

∂

∂ρ
f(ρ, qn

j )
(
(ρn − ρ) +O(ρ− ρn)2

)
+

1
2n

nξ∑

j=1

∂

∂x
f(ρ, qn

j )+O
(

1
n

)
= 0.

Since lim supn→∞ n |ρ− ρn| <∞, we may consider a subsequence such that
limk nk (ρ− ρnk

) = K. Dropping the k subscript to simplify the notation,
the last display becomes

−
nξ∑

j=1

∂

∂ρ
f(ρ, qn

j )
(
K

n
+O

(
1
n2

))
+

1
2n

nξ∑

j=1

∂

∂x
f(ρ, qn

j )+O
(

1
n

)
= 0. (3.3)

We conclude that

lim
n→∞

−K
n

nξ∑

j=1

∂

∂ρ
f(ρ, qn

j ) +
1
2n

nξ∑

j=1

∂

∂x
f(ρ, qn

j ) = 0.

Again using that ρξ < 1,

sup
0≤j≤nξ

sup
x∈(qn

j ,qn
j+1)

∣∣∣∣
∂

∂ρ
f(ρ, qn

j ) − ∂

∂ρ
f(ρ, x)

∣∣∣∣→ 0,

and

sup
0≤j≤nξ

sup
x∈(qn

j ,qn
j+1)

∣∣∣∣
∂

∂x
f(ρ, qn

j ) − ∂

∂x
f(ρ, x)

∣∣∣∣→ 0.

Hence by the Lebesgue Dominated Convergence Theorem, each of the Rie-
mann sums in (3.3) converges to the corresponding integral, therefore

−K
∫ ξ

0

∂

∂ρ
f(ρ, x)dx+

1
2

∫ ξ

0

∂

∂x
f(ρ, x)dx= 0.

This is just

−K
∫ ξ

0

x

(1 − ρx)2
dx+

1
2

(
1

1 − ρξ
− 1
)

= 0,

and computing the integral gives

K =
1
2

ρ3ξ

(1− ρξ) log(1 − ρξ) + ρξ
.

Since this limit is independent of the subsequence the convergence is proved.
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Next we state a result on the on the asymptotics of Jn(θ) − J(θ).

Theorem 3.5. Assume ξ < 1 and θ > ξ, define ρ to be the unique positive
root of (2.3), and define Jn and J by (2.8) and (2.2), respectively. Then

lim
n→∞

n(J(θ) − Jn(θ)) =
1
2

log
(

1 − ρξ

1− ξ

)
.

Proof. For a > 0 let F̂ (a) = F (loga) and F̂n(a) = Fn(loga), where F and
Fn are defined in (2.6) and (2.7), respectively. From the definitions of J and
Jn,

J(θ) = (logρ)θ− F̂ (ρ)
Jn(θ) = (logρn)θ − F̂n(ρn).

It follows that

n(J(θ) − Jn(θ)) = n(log ρ− logρn)θ − n(F̂ (ρ)− F̂n(ρn)). (3.4)

By Lemma 3.4

logρ− logρn = −(ρn − ρ) · 1
ρ

+ o(ρn − ρ)

= −K
n

1
ρ

+ o

(
1
n

)
. (3.5)

Also

F̂ (ρn) − F̂ (ρ) = (ρn − ρ)F̂ ′(ρ) + o(ρn − ρ) (3.6)

=
K

n
F̂ ′(ρ) + o

(
1
n

)
.

We continue to estimate the difference:

F̂ (ρn) − F̂n(ρn) = −(1− ξ) log(1− ξ) +
1 − ρnξ

ρn
log(1− ρnξ)

− 1
n

nξ∑

j=1

log(pn
j ) +

1
n

nξ∑

j=1

log(1− qn
j ρn)

=
∫ ξ

0
log(1 − x)dx−

∫ ξ

0
log(1− ρnx)dx

− 1
n

nξ∑

j=1

log(1− qn
j ) +

1
n

nξ∑

j=1

log(1 − ρnq
n
j ).

17



With f(x) = log(1− x) and gn(x) = log(1− ρnx) the last equation becomes

F̂ (ρn) − F̂n(ρn)

=
nξ∑

j=1

∫ qn
j

qn
j−1

(f(x)− f(qn
j ))dx−

nξ∑

j=1

∫ qn
j

qn
j−1

(gn(x)− gn(qn
j ))dx

=
nξ∑

j=1

f ′(qn
j )

1
2n2

−
nξ∑

j=1

g′n(qn
j )

1
2n2

+ o

(
1
n

)
.

Therefore

n(F̂ (ρn) − F̂n(ρn)) =
1
2n

nξ∑

j=1

f ′(qn
j )− 1

2n

nξ∑

j=1

g′n(qn
j ) + o(1). (3.7)

Since ξ < 1, by the Lebesgue Dominated Convergence Theorem,

lim
n→∞

n(F̂ (ρn)− F̂n(ρn)) =
1
2

∫ ξ

0
f ′(x)dx− 1

2

∫ ξ

0
g′(x)dx

i.e.,

lim
n→∞

n(F̂ (ρn) − F̂n(ρn)) =
1
2

log(1− ξ)− 1
2

log(1− ρξ). (3.8)

Now insert (3.8), (3.6) and (3.5) into (3.4) to obtain

lim
n→∞

n(J(θ) − Jn(θ)) = −K
ρ
θ − 1

2
log(1 − ξ) +

1
2

log(1 − ρξ) +KF̂ ′(ρ).

Since θ = F ′(logρ) and F ′(logρ) = F̂ ′(ρ)ρ, therefore F̂ ′(ρ) = θ/ρ. Thus

lim
n→∞

n(J(θ) − Jn(θ)) =
1
2

log
(

1 − ρξ

1− ξ

)
.

Note that the value ofK is not used in the proof at all, only the existence
of the limit. Also notice that because of the singular behavior of log(1− ξ)
at ξ = 1, we will have to separate the case when ξ = 1. In fact when ξ = 1
we have the following modified version of Theorem 3.5.

Theorem 3.6. Assume ξ = 1 and θ > ξ, define ρ to be the unique positive
root of (2.3), and define Jn and J by (2.8) and (2.2), respectively. Then

lim
n→∞

(
n(J(θ) − Jn(θ))− 1

2
logn

)
=

1
2

log(2π(1− ρ)).
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Proof. First observe that (3.4), (3.5), (3.6) and F̂ ′(ρ) = θ/ρ still hold.
Thus

n(J(θ)−Jn(θ))− 1
2

logn = n(logρ− log ρn)θ−n
(
F̂ (ρ)− F̂n(ρn)

)
− 1

2
logn
(3.9)

and

log ρ− logρn = −K
n

1
ρ

+ o

(
1
n

)

F̂ (ρn) − F̂ (ρ) =
K

n

θ

ρ
+ o

(
1
n

)
.

The last two displays imply

lim
n→∞

(
n(logρ− log ρn)θ + n

(
F̂ (ρn)− F̂ (ρ)

))
= 0. (3.10)

The only discrepancy occurs when we compute F̂n(ρn) − F̂ (ρn). Letting
gn(x) = log(1− ρnx),

F̂n(ρn)− F̂ (ρn)

= − 1
n

n∑

j=1

log(1− qn
j ρn) +

1
n

n∑

j=1

log(pn
j ) − 1 − ρn

ρn
log(1− ρn)

=
n∑

j=1

g′n(qn
j )

1
2n2

+


1 +

1
n

n∑

j=1

log(pn
j )


+ o

(
1
n

)
. (3.11)

The last equality is because we interpret −1−ρn

ρn
log(1−ρn) as

∫ 1
0 gn(x)dx+1

and then use a Taylor expansion on gn(x) as was done to obtain (3.7). Since
pn

j = (n− j + 1)/n, j = 1, . . . , n,

1
n

n∑

j=1

log(pn
j ) =

1
n

log
(
n!
nn

)
.

By Stirling’s formula, [8, Page 54, (9.15)]

1
n

(
log

√
2πn+

1
(12n+ 1)

)
<

1
n

n∑

j=1

log(pn
j ) + 1 <

1
n

(
log

√
2πn+

1
12n

)
,
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and thus

lim
n→∞


n


 1
n

n∑

j=1

log pn
j + 1


− 1

2
logn


 =

1
2

log(2π). (3.12)

By the Dominated Convergence Theorem

lim
n→∞

n∑

j=1

g′n(qn
j )

1
2n

=
1
2

(g(1)− g(0)) =
1
2

log(1− ρ). (3.13)

Now combining (3.12) and (3.13) with (3.11) gives

lim
n→∞

(
n
(
F̂n(ρn)− F̂ (ρn)

)
− 1

2
logn

)
=

1
2

log(2π(1− ρ)).

The argument is completed by combining the last display, (3.10), and (3.9).

3.3 Proofs of the Main Theorems

In this subsection we give the proofs of Theorems 2.1 and 2.2. For reasons
outlined in the introduction, we start with Theorem 2.1. Following [3], we
first represent the probabilities using a change of measure suggested by the
large deviations analysis. This will exhibit each probability as the product
of an exponential and an integral. The exponential represents the difference
between the large deviation approximation and an exponential term com-
ing from our particular change of measure, and can be approximated using
Theorem 3.5. To approximate the integral we use the refined CLT stated in
Theorem 3.3, and the final result just combines these two approximations.

Proof of Theorem 2.1, (2.13), (2.14). Recall that ρξ < 1 and ρn → ρ.
Thus for sufficiently large n the independent random variables

X̃n
j ∼ G(ρnq

n
j )

are well defined. Let
θn
j = E

[
X̃n

j

]
=

1
1 − ρnqn

j

and let Z̃n
j
.= X̃n

j − θn
j be the corresponding random variables centered at 0.

Recalling (2.10) and (2.11), we find that

Un
.=

∑nξ
j=1 X̃

n
j − nθ

√
nσ2

n

(3.14)

20



has 0 mean and unit variance. Let Hn(u) .= P {Un ≤ u}. Un is a lattice
random variable with lattice points

nξ − nθ√
nσ2

n

,
nξ − nθ + 1√

nσ2
n

,
nξ − nθ + 2√

nσ2
n

, · · · .

Let
dn

.=
1√
nσ2

n

denote the lattice step size, and observe that 0 is a lattice point because
nθ, nξ are integers and θ > ξ.

By expressing P {Y n(ξ) ≤ θ} and P {Y n(ξ) ≥ θ} in terms of Un via the
change of measure that relates the distribution of Xn

j to that of X̃n
j , we

obtain

P {Y n(ξ) ≤ θ} = e−nJn(θ)

∫

{u≤0}
exp(−α∗

nu
√
nσn)dHn(u) (3.15)

P {Y n(ξ) ≥ θ} = e−nJn(θ)

∫

{u≥0}
exp(−α∗

nu
√
nσn)dHn(u) (3.16)

(see the Appendix for the details of this calculation). Therefore
√
n P {Y n(ξ) ≤ θ} enJ(θ) = en(J(θ)−Jn(θ))

∫

{u≤0}

√
n exp(−α∗

nu
√
nσn)dHn(u)

(3.17)
√
n P {Y n(ξ) ≥ θ} enJ(θ) = en(J(θ)−Jn(θ))

∫

{u≥0}

√
n exp(−α∗

nu
√
nσn)dHn(u).

(3.18)

From now on, let us focus on the proof of (2.13). Denote

An
.= n(J(θ) − Jn(θ)) and Bn

.=
∫

{u≤0}

√
n exp(−α∗

nu
√
nσn)dHn(u).

(3.19)
First notice that in (2.13) we are in the case ξ < θ, ξ > 1 − e−θ . As was
discussed below (2.8), this implies α∗

n < 0. Since Hn(u) is the cumulative
distribution function of the lattice variable Un, the integral in Bn can be
written as

Bn =
√
n

0∑

k=−∞
exp(−α∗

nk) [Hn(kdn) −Hn((k − 1)dn))]

=
√
n

( −1∑

k=−∞
Hn(kdn) [exp(−α∗

nk) − exp(−α∗
n(k + 1))] +Hn(0)

)
.
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Since α∗
n < 0,

Bn =
√
n

−1∑

k=−∞
(Hn(kdn)−Hn(0)) [exp(−α∗

nk) − exp(−α∗
n(k+ 1))] .

By definition (2.9) ρn = exp(α∗
n), and therefore

Bn =
√
n

−1∑

k=−∞
(Hn(kdn) −Hn(0))

(
ρ−k

n − ρ−(k+1)
n

)

=
√
n

∞∑

k=1

(Hn(0)−Hn(−kdn))
(
ρk−1

n − ρk
n

)
.

Let ∆n
.= 1/(2

√
nσ2

n), and H#
n (u) be the distribution function obtained

from Hn(u) by linear interpolation through the midpoints as stated in The-
orem 3.3. Therefore if u is one of the midpoints of the lattice then H#

n (u) =
Hn(u) by construction. Also, since Hn is piecewise constant and jumps just
at the lattice points, Hn(kdn) = H#

n (kdn + ∆n) for any k ∈ Z. By setting
un

k
.= kdn + ∆n and inserting this into the formula for Bn, one obtains

Bn =
√
n

∞∑

k=1

(
H#

n (un
0) −H#

n (un
−k)
)(

ρk−1
n − ρk

n

)
. (3.20)

We now apply the normal approximation to H#
n (u) as given in Theorem

3.3. In the notation of that theorem Wn
k = Z̃n

k , k = 1, · · · , nξ and Wn
k = 0

otherwise. Parts 3 and 4 of Condition 3.1 are satisfied as Z̃n
k are lattice

random variables with uniformly bounded fourth moments:

E
[
(Z̃n

k )4
]
< C <∞.

This uniform bound follows from the fact that for any ε ∈ (0, 1− ρξ) there
is a uniform bound on the failure probabilities ρnq

n
k < ρξ + ε < 1 for all

sufficiently large n. Since the Z̃n
k have 0 mean,

µn
.=

1
n

nξ∑

k=1

E
[
(Z̃n

k )3
]
.

It is readily verified that

E
nξ∑

j=1

(
Z̃n

j

)2
= nσ2

n,
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where σ2
n is obtained through (2.11). Moreover σ2

n → σ2 = F ′′(α∗) [see
Section 2.2]. It is also readily verified that µn = F ′′′

n (α∗
n), and in fact

µn → F ′′′(α∗). Hence parts 1 and 2 of Condition 3.1 are also satisfied.
Verification of part 5 follows from Lemma A.1, which is stated and proved
in the appendix.

Applying Theorem 3.3 and gives

H#
n (un

0) −H#
n (un

−k)
= N

(
un

0

)
−N (un

−k)

+
µn

6σ3
n

√
n

[
(1 − (un

0)2)N(un
0) − (1− (un

−k)
2)N(un

−k)
]
+ o

(
1√
n

)
,

where o (1/
√
n) is uniform in k ∈ Z.

Observe that for fixed k ∈ N,

lim
n→∞

√
n
(
N
(
un

0

)
− N (un

−k)
)

=
1√
2π

k

σ
, (3.21)

and that the left hand side is dominated by Kk for some K < ∞. In
addition,

1√
n

∣∣(1 − (un
0)2)N(un

0) − (1− (un
−k)

2)N(un
−k)
∣∣ ≤ Kk2

√
n

for some K <∞ and without loss we assume it is the same K used to bound
the normal distribution. Also, for each fixed k ∈ Z,

µn

6σ3
n

(
(1− (un

0)2)

as n→ ∞. Finally, observe that ρn → ρ implies for any k ∈ N,

ρk−1
n − ρk

n → ρk−1 − ρk

and ρn < 1 for sufficient large n. By the Dominated Convergence Theorem

lim
n→∞

Bn =
∞∑

k=1

1√
2π
k

1
σ

(
ρk−1 − ρk

)

=
1√

2πσ(1 − ρ)
. (3.22)

Applying Theorem 3.5 to An in (3.19) and combining the estimate (3.22),
we finally have

lim
n→∞

√
n P {Y n(ξ) ≤ θ} enJ(θ) =

1√
2πσ2

(
1

1 − ρ

)√
1 − ρξ

1 − ξ
.
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We next prove Theorem 2.1, (2.14). The idea and technique of the proof
is largely the same as the proof for (2.13). In this case ξ < 1 − e−θ , and as
remarked below (2.9), ρn > 1 for all sufficiently large n. In formula (3.18),
we let

Bn
.=
∫

{u≥0}

√
n exp(−α∗

nu
√
nσn)dHn(u).

Omitting a few details, this can be rewritten as

Bn =
∞∑

k=0

√
n
(
Hn(kdn) −Hn(−dn)

)(
ρ−k

n − ρ−(k+1)
n

)

=
∞∑

k=0

√
n
(
H#

n (un
k) −H#

n (un
−1)
)(
ρ−k

n − ρ−(k+1)
n

)
.

Applying Theorem 3.3 in a similar manner as in the last case, the Dominated
Convergence Theorem gives

lim
n→∞

Bn =
∞∑

k=0

k + 1√
2πσ

(
ρ−k − ρ−(k+1)

)
=

ρ√
2πσ(ρ− 1)

.

Applying Theorem 3.5 to the exponential part of (3.18) finishes the proof of
Theorem 2.1, (2.14).

Before analyzing the final case ξ = 1 for the filling process, we prove the
refined asymptotics for the occupancy process when ξ < 1.

Proof of Theorem 2.2, (2.16), (2.17). Since (2.4) holds, (2.13) implies
(2.16). To analyze (2.17) we use (2.5), which states that V2 is the union of
W2 and

Cn .=
{
Y n(ξ) < θ and Xn

nξ+1 > nθ − nY n(ξ)
}
.

From (2.14) we already know that P {W2} has 1
2 -prefactor

1√
2πσ2

(
ρ

ρ− 1

)√
1− ρξ

1 − ξ
.

Thus to show (2.17) we must prove that P {Cn} has 1
2-prefactor

1√
2πσ2

(
ρξ

1− ρξ

)√
1 − ρξ

1− ξ
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with the same exponent J(θ). From the definition of Xn
nξ+1, it is easy to

verify
P
{
Xn

nξ+1 > k
}

= ξk .

With G(x) .= P {Y n(ξ) ≤ x}, we can represent P {Cn} as

P {Cn} =
∫

{x<θ}
ξnθ−nxdG(x).

By the same change of measure argument as used in (3.17), and with Hn

the cumulative distribution function of Un defined in (3.14)

P {Cn} = e−nJn(θ)

∫

{u<0}
ξ−u

√
nσne−u

√
nσnα∗

ndHn(u)

= e−nJn(θ)

∫

{u<0}
(ρnξ)

−u
√

nσn dHn(u). (3.23)

Replacing expα∗
n by ρn, in (3.22) we showed that

lim
n→∞

√
n

∫

{u≤0}
(ρn)−u

√
nσn dHn(u) =

1√
2πσ(1− ρ)

.

This limit continues to hold if ρn and ρ are replaced by ρnξ and ρξ, so long
as ρξ < 1. Therefore

lim
n→∞

√
n

∫

{u<0}
(ρnξ)

−u
√

nσn dHn(u)

=
1√

2πσ(1− ρξ)
− lim

n→∞

√
n
(
Hn(0)−Hn(un

−1)
)
,

where un
−1 is defined in (3.20). Using (3.21) and the refined normal approx-

imation, Theorem 3.3, we have

lim
n→∞

√
n
(
Hn(0)−Hn(un

−1)
)

=
1√
2πσ

.

This shows limn→∞
√
n
∫
{u<0} (ρnξ)

−u
√

nσn dHn(u) = ρξ√
2πσ(1−ρξ)

. Applying

Theorem 3.5 to the exponential part of (3.23) shows that P {Cn} has 1
2-

prefactor 1√
2πσ2

(
ρξ

1−ρξ

)√
1−ρξ
1−ξ with the same exponent J(θ), and hence fin-

ishes the proof of Theorem 2.2, (2.17).

Finally, we will prove the ξ = 1 case in Theorem 2.1 and Theorem 2.2,
i.e., (2.15), (2.18). Because of (2.4) we need only prove (2.15) and (2.18)
will follow.
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Proof of Theorem 2.1, (2.15). The only difference between this case and
the proof of (2.13) is that we can no longer use Theorem 3.5 to calculate the
limit of An. We rewrite the representation for P {Y n(1) ≤ θ} slightly as

P {Y n(1) ≤ θ} enJ(θ) = en(J(θ)−Jn(θ))

∫

{u≤0}
exp(−α∗

nu
√
nσn)dHn(u),

and observe that

lim
n→∞

∫

{u≤0}

√
n exp(−α∗

nu
√
nσn)dHn(u) =

1√
2πσ(1− ρ)

is still valid. By Theorem 3.6

lim
n→∞

en(J(θ)−Jn(θ))

√
n

=
√

2π(1− ρ).

Putting these together gives

lim
n→∞

P {Y n(1) ≤ θ} enJ(θ) =
1

σ
√

1 − ρ
,

which completes the proof.

4 Numerical Results

The following tables and figures compare the refined asymptotic results of
Theorems 2.1 and 2.2 with exact results using the inclusion-exclusion prin-
ciple and numerical estimates obtained by importance sampling. In all cases
importance sampling was conducted for 105 trials. In the graphs approxi-
mations based on unrefined large deviation asymptotics are also presented.

Table 1 presents results for the filling process, case (2.14), for ξ = 0.5, θ =
1.2, and a range of values for the scale parameter.

As the table shows the refined asymptotic tends to overestimate the
probability but with a percentage error that decreases as n increases. At
n = 10 this is well over 50%, however by n = 20 it has fallen to under 30%
and by n = 100 it is only 6%.

In Figure 1 we depict the combinatorial probability again with n = 100,
θ = 1.2 as above, and with ξ varying. The probability estimated from the
large deviations exponent alone is also shown. This overestimates the true
value by roughly a factor of 10.
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n Combinatorial Refined Approx. Imp. Sample
10 7.55× 10−3 1.22× 10−2 7.43× 10−2

20 9.56× 10−4 1.24× 10−3 9.56× 10−4

50 2.10× 10−6 2.35× 10−6 2.08× 10−6

100 9.73× 10−11 1.03× 10−10 9.71× 10−11

200 2.74× 10−19 2.82× 10−19 2.68× 10−19

Table 1: Estimates for P {Y n(ξ) ≥ θ} , ξ = 0.5, θ = 1.2.

The combinatorial probabilities were obtained as follows. Recall that
Y n(ξ) ≥ θ is the event that at least nθ balls are required to fill nξ urns. We
decompose this according to whether or not exactly nθ balls are required.
Thus we can write

{Y n(ξ) ≥ θ} = {Y n(ξ) > θ} ∪Anξ
nθ

where Anξ
nθ is the event that the nξth urn to be filled is filled with the nθth

ball that is thrown. Recall the notation that we used in Section 2.1. Γn
0 (t)

is the fraction of empty urns after btnc balls are thrown. Setting r = nθ,
m = n(1− ξ), the probability of Anξ

nθ is

P
{

Γn
0

(
r− 1
n

)
=
m+ 1
n

}
· m+ 1

n
.

Meanwhile the event {Y n(ξ) > θ} can be written as Γn
0

(
r
n

)
> m

n . The
“exact” calculation of the quantities P

{
Γn

0

(
r
n

)
> m

n

}
and P

{
Γn

0

(
r
n

)
≥ m

n

}

can then be obtained using the well known method of inclusion and exclusion
as described in [8, Chapter II.11] and as denoted there [8, Chapter II, (11.9)]
by

xm(r, n) .= P
{
Γn

0

( r
n

)
≥ m

n

}
. (4.1)

Table 2 is for the case when exceptionally few balls are needed to fill
a given fraction of urns, which corresponds to (2.13) in Theorem 2.1. The
blanks indicate cases when the combinatorial expression, as computed, gave
obviously incorrect values which resulted from rounding errors. The pat-
tern of results is similar to that of Table 1 with the refined approximation
overestimating the underlying probability but with a decreasing percentage
error as n increases.

We now turn to the case of filling all the urns, Theorem 2.1, (2.15).
Figure 2 shows results for the probability of filling n = 50 urns with θ ∈
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0.4 0.45 0.5 0.55 0.6 0.65 0.7
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−4
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−3
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−2
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−1

10
0

P
r{

 Y
n >

= 
n θ

}

Large Deviations
Refined Approx.
Combinatorial Prob.

Figure 1: Estimates for P {Y n(ξ) ≥ θ} and the “exact” result.

n Combinatorial Refined Approx. Imp. Sample
10 1.53× 10−1 1.73× 10−1 1.52× 10−1

20 2.47× 10−2 2.64× 10−2 2.46× 10−2

50 1.61× 10−4 1.68× 10−4 1.63× 10−4

100 − 5.58× 10−8 5.44× 10−8

200 − 8.72× 10−15 8.65× 10−15

Table 2: Estimates for P {Y n(ξ) ≤ θ} , ξ = 0.8, θ = 1.

[1.4, 2.0]. Sample results are given in Table 3 for the probability of filling
urns with only half as many additional balls. Blanks indicate rounding errors
in the combinatorial calculation as before.

For Theorem 2.2 we take only the case of (2.17) as the other two results
are identical with the corresponding ones for Theorem 2.1. The refined ap-
proximation is for the probability that there are at least (1−ξ)n urns empty
after θ balls per urn have been thrown. By definition this is determined as
xm(r, n) as we discussed before in (4.1). Furthermore this probability is
greater than the probability that it takes nθ balls to fill nξ urns as shown
in (2.5).

Our results are depicted in Figure 3, again for n = 100, θ = 1.2, as in the
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1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
θ
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−10

10
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10
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−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Pr
{Y

n <
= 

 θ
 }

Large Deviations
Refined Approx.
Combinatorial Prob.

Figure 2: Results for P {Y n(ξ) ≤ θ} the refined approximation and “exact”
results, ξ = 1.

case of Figure 1. These results are given in Table 4. Comparison of Tables 1
and 4 shows that the probabilities differ by a significant factor, e.g., roughly
a factor of 4 in the case n = 50.
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n Combinatorial Refined Approx. Imp. Sample
10 4.60× 10−2 4.66× 10−2 4.60× 10−2

20 1.32× 10−3 1.33× 10−3 1.32× 10−3

50 3.06× 10−8 3.07× 10−8 3.04× 10−8

100 − 5.75× 10−16 5.76× 10−16

200 − 2.02× 10−31 2.02× 10−31

Table 3: Estimates for P {Y n(ξ) ≤ θ} , ξ = 1.0, θ = 1.5.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
 1 − ξ

1e−15

1e−14

1e−13

1e−12

1e−11

1e−10

1e−09

1e−08

1e−07

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

Pr
 {

 Γ
0(θ

) >
= 

1 
− 

ξ}

Large Deviations
Refined Approx.
Exact Probability

Figure 3: Estimates for P {Γn
0 (θ) ≥ 1 − ξ} and the “exact” result

A Appendix

We begin by showing that Condition 3.2 holds.

Lemma A.1. The sequences of random variables Z̃n
j meet Condition 3.2.

Proof. In our model

Yn =
ξn∑

j=1

Z̃n
j ,

where Z̃n
j = X̃n

j − θn
j and

X̃n
j ∼ G(ρnq

n
j )
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n Combinatorial Refined Approx. Imp. Sample
10 4.49× 10−2 5.01× 10−2 4.49× 10−2

20 4.79× 10−3 5.11× 10−3 4.77× 10−3

50 9.39× 10−6 9.67× 10−6 9.41× 10−6

100 4.19× 10−10 4.25× 10−10 4.18× 10−10

200 1.15× 10−18 1.16× 10−18 1.15× 10−18

Table 4: Estimates for P {Γn
0 (θ) ≥ 1 − ξ} , ξ = 0.5, θ = 1.2.

and
θn
j =

1
1 − ρnqn

j

.

So we can extend the random variables to all 1 ≤ j ≤ n by settingWn
j = Z̃n

j

when j ≤ ξn andWn
j = 0 when ξn < j ≤ n. We determine φn

j (t) = E
[
eitZ̃

n
j

]

for each Z̃n
j as

φn
j (t) =

ei(1−θn
j )tρnq

n
j

1 − eit
(
1 − ρnq

n
j

) for 1 ≤ j ≤ ξn.

Thus
∣∣φn

j (t)
∣∣ =

∣∣∣∣∣
ρnq

n
j

1 − eit(1 − ρnq
n
j )

∣∣∣∣∣ .

Therefore it suffices to show that for all 1 ≤ j ≤ ξn and t ∈ [−π,−δ]∪ [δ, π]
there is c > 1 so that ∣∣∣∣∣

1 − eit(1 − ρnq
n
j )

ρnq
n
j

∣∣∣∣∣ > c. (A.1)

Let yn
j = 1

ρnqn
j
, then yn

j > 1
ρnξ . Since ρn → ρ and ρξ < 1 we can assume

yn
j > y > 1, where y is some constant. Now we have

∣∣∣∣∣
1 − eit(1 − ρnq

n
j )

ρnqn
j

∣∣∣∣∣

2

=
∣∣yn

j − eit(yn
j − 1)

∣∣2 .

Define f(t, x) .= |x− eit(x− 1)|2, so that

f(t, x) = x2 − 2 cos tx(x − 1) + (x− 1)2.
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Since t ∈ [−π,−δ]∪ [δ, π], for x > 1 we have

f(t, x) ≥ 2(1− cos δ)x2 − 2(1− cos δ)x+ 1 .= g(x).

g(x) is monotone increasing on [1/2,∞), and since yn
j > y > 1 we have

g(yn
j ) > g(y). Therefore when t ∈ [−π,−δ]∪ [δ, π],

∣∣∣∣∣
1 − eit(1 − ρnq

n
j )

ρnq
n
j

∣∣∣∣∣

2

= f(t, yn
j )

≥ g(yn
j )

≥ g(y).

Lastly since y > 1 we know g(y) > g(1) = 1. Having shown (A.1), it follows
that our model satisfies Condition 3.2.

We next show that the change-of-measure formulas (3.15) and (3.16) are
true. Since they are similar, the proof is given for just (3.15).

Proof of (3.15). We recall some previously used and also introduce some
new notation:

Gn(x) = P {Y n(ξ) ≤ x} Gn
i (x) .= P {Xn

i ≤ x}

Hn(x) = P {Un ≤ u} Hn
i (x) .= P

{
X̃n

i ≤ x
}
.

Recall also that θn
i = E

[
X̃n

i

]
and that

∑nξ
i=1 θ

n
i = nθ. Denote the left hand

side of (3.15) by L and the right hand side by R. In terms of this notation

R = e−nJn(θ)

∫
nξ
i=1 un

i ≤0
exp

(
−α∗

n

(
nξ∑

i=1

un
i

))
nξ∏

i=1

dHn
i (un

i + θn
i ) . (A.2)

Let dδ(·) be the counting measure on Z. The distribution of each X̃n
i has

the explicit form

dHn
i (z) = (ρnq

n
i )z−1 (1− ρnq

n
i )dδ(z).
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Thus

nξ∏

i=1

dHn
i (un

i + θn
i )

=
nξ∏

i=1

(ρnq
n
i )un

i +θn
i −1 (1 − ρnq

n
i )dδ(un

i + θn
i )

= ρ
nθ−nξ+ nξ

i=1 un
i

n

(
nξ∏

i=1

[
(qn

i )un
i +θn

i −1 (1 − ρnq
n
i )
])( nξ∏

i=1

dδ(un
i + θn

i )

)
,

(A.3)

where the last equality uses
∑nξ

i=1 θ
n
i = nθ. Since ρn = eα

∗
n

exp

(
−α∗

n

(
nξ∑

i=1

un
i

))
= ρ

− nξ
i=1 un

i
n . (A.4)

By definition of Jn(θ) in (2.8)

e−nJn(θ) = exp [−n (α∗
nθ − Fn(α∗

n))]

= exp

(
−nθα∗

n + nα∗
nξ +

nξ∑

i=1

log (pn
i ) −

nξ∑

i=1

log
(
1 − qn

i e
α∗

n

))
.

Again using ρn = eα
∗
n , this expression can be rewritten as

e−nJn(θ) =
ρ−nθ+nξ

n

(∏nξ
i=1 p

n
i

)

∏nξ
i=1 (1− qn

i ρn)
. (A.5)

Inserting (A.3), (A.4), and (A.5) into (A.2) gives

R =
∫

nξ
i=1 un

i ≤0

nξ∏

i=1

(
pn

i (qn
i )un

i +θn
i −1dδ(un

i + θn
i )
)
.

On the other hand, notice that by definition

L =
∫

nξ
i=1 xn

i ≤θ

nξ∏

i=1

dGn
i (xn

i ).
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Using the change of variables un
i = xn

i − θn
i ,

L =
∫

nξ
i=1 un

i ≤0

(
nξ∏

i=1

dGn
i (un

i + θn
i )

)
.

Since Gn
i is the cumulative distribution function of Xn

i

L =
∫

nξ
i=1 un

i ≤0

nξ∏

i=1

(
pn

i (qn
i )un

i +θn
i −1dδ(un

i + θn
i )
)

= R.

This completes the proof of (3.15).
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